1,215 research outputs found

    Toward altimetric data assimilation in a Tropical Atlantic model

    Get PDF
    We present three types of experiments of sequential assimilation of altimetric data in a linear tropical Atlantic model, using an analysis technique we developed. In the first experiments we assimilate dynamic height fields calculated from simulated data in order to study the impacts of assimilations. In the second ones we assimilate dynamic height anomaly fields calculated from simulated data, and finally, in the third ones we use sea level anomaly fields obtainend from altimetric data from Geosat. Perturbations are observed in the Eastern part of the basin, due to Kelvin waves artificially generated in the West Equatorial basin, due to Kelvin waves artificially generated in the West Equatorial basin. However, we show that altimetric data may be useful for improving model simulations in the tropics when appropriate assimilation techniques are used. (Résumé d'auteur

    Effects of the bias enhanced nucleation hot-filament chemical-vapor deposition parameters on diamond nucleation on iridium

    Get PDF
    The effects of the bias current density and the filament-to-substrate distance on the nucleation of diamond on iridium buffer layers were investigated in a hot-filament chemical-vapor deposition (HFCVD) reactor. The nucleation density increased by several orders of magnitude with the raise of the bias current density. According to high-resolution field-emission gun scanning electron microscopy observation, diamond nuclei formed during bias-enhanced nucleation (BEN) did not show any preferred oriented growth. Moreover, the first-nearest-neighbor distance distribution was consistent with a random nucleation mechanism. This occurrence suggested that the diffusion of carbon species at the substrate surface was not the predominant mechanism taking place during BEN in the HFCVD process. This fact was attributed to the formation of a graphitic layer prior to diamond nucleation. We also observed that the reduction of the filament sample distance during BEN was helpful for diamond growth. This nucleation behavior was different from the one previously reported in the case of BEN-microwave chemical-vapor deposition experiments on iridium and has been tentatively explained by taking into account the specific properties and limitations of the HFCVD technique

    Thermodynamic evidence of giant salt deposit formation by serpentinization: an alternative mechanism to solar evaporation

    Get PDF
    International audienceThe evaporation of seawater in arid climates is currently the main accepted driving mechanism for the formation of ancient and recent salt deposits in shallow basins. However, the deposition of huge amounts of marine salts, including the formation of tens of metres of highly soluble types (tachyhydrite and bischofite) during the Aptian in the South Atlantic and during the Messinian Salinity Crisis, are inconsistent with the wet and warm palaeoclimate conditions reconstructed for these periods. Recently, a debate has been developed that opposes the classic model of evaporite deposition and argues for the generation of salt by serpentinization. The products of the latter process can be called "dehydratites". The associated geochemical processes involve the consumption of massive amounts of pure water, leading to the production of concentrated brines. Here, we investigate thermodynamic calculations that account for high salinities and the production of soluble salts and MgCl2-rich brines through sub-seafloor serpentinization processes. Our results indicate that salt and brine formation occurs during serpentinization and that the brine composition and salt assemblages are dependent on the temperature and CO2 partial pressure. Our findings help explain the presence and sustainability of highly soluble salts that appear inconsistent with reconstructed climatic conditions and demonstrate that the presence of highly soluble salts probably has implications for global tectonics and palaeoclimate reconstructions

    The Low CO Content of the Extremely Metal Poor Galaxy I Zw 18

    Full text link
    We present sensitive molecular line observations of the metal-poor blue compact dwarf I Zw 18 obtained with the IRAM Plateau de Bure interferometer. These data constrain the CO J=1-0 luminosity within our 300 pc (FWHM) beam to be L_CO < 1 \times 10^5 K km s^-1 pc^2 (I_CO < 1 K km s^-1), an order of magnitude lower than previous limits. Although I Zw 18 is starbursting, it has a CO luminosity similar to or less than nearby low-mass irregulars (e.g. NGC 1569, the SMC, and NGC 6822). There is less CO in I Zw 18 relative to its B-band luminosity, HI mass, or star formation rate than in spiral or dwarf starburst galaxies (including the nearby dwarf starburst IC 10). Comparing the star formation rate to our CO upper limit reveals that unless molecular gas forms stars much more efficiently in I Zw 18 than in our own galaxy, it must have a very low CO-to-H_2 ratio, \sim 10^-2 times the Galactic value. We detect 3mm continuum emission, presumably due to thermal dust and free-free emission, towards the radio peak.Comment: 5 pages in emulateapj style, accepted by the Astrophysical Journa

    Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine—Are We There Yet?

    Get PDF
    Funding Information: This work was supported by Fundação para a Ciência e a Tecnologia (FCT), research grant number PTDC/MED-ONC/1215/2021/PT. Funding Information: The authors thank FCT and the Champalimaud Foundation for funding. Publisher Copyright: © 2022 by the authors.Despite the wide variety of existing therapies, multiple myeloma (MM) remains a disease with dismal prognosis. Choosing the right treatment for each patient remains one of the major challenges. A new approach being explored is the use of ex vivo models for personalized medicine. Two-dimensional culture or animal models often fail to predict clinical outcomes. Three-dimensional ex vivo models using patients’ bone marrow (BM) cells may better reproduce the complexity and heterogeneity of the BM microenvironment. Here, we review the strengths and limitations of currently existing patient-derived ex vivo three-dimensional MM models. We analyze their biochemical and biophysical properties, molecular and cellular characteristics, as well as their potential for drug testing and identification of disease biomarkers. Furthermore, we discuss the remaining challenges and give some insight on how to achieve a more biomimetic and accurate MM BM model. Overall, there is still a need for standardized culture methods and refined readout techniques. Including both myeloma and other cells of the BM microenvironment in a simple and reproducible three-dimensional scaffold is the key to faithfully mapping and examining the relationship between these players in MM. This will allow a patient-personalized profile, providing a powerful tool for clinical and research applications.publishersversionpublishe
    corecore